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1. Let z; = u + d and zo = u ! be two points on D.
2 2 2 2
(a) Find the equation of P-line passing through z; and z and express your answer in form of
(x—h)?2+ (y— k)2 =r2

(b) Find the distance d(z1, z2) between z; and zo with respect to the Poincaré metric.
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2. Let A=2 = 3’ B=2=0and C =23 = % be three points on D. Find the P-angle Z/ZBAC.
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3. Recall that sinhz = ———, coshz = ———— and tanhz = = .
2 coshx e*4e

Show that
(a) cosh?z —sinh?z =1
(b) sinh 2z = 2sinh x coshx

(¢) cosh2z = cosh® z 4 sinh? z = 2cosh? x — 1 = 2sinh® z + 1

4. Let t = tanh g, show that
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(c) tanhx:lthZ.

5. Recall the cosine rule for hyperbolic triangle:
sinh b sinh ccos A = cosh bcosh ¢ — cosh a

and the sine rule for hyperbolic triangle:
sinA  sinB  sinC
sinha sinhb  sinhc’

(a) If A=30°, B=45° and a = In4. Find the value(s) of c.

(b) If AABC is an equilateral P-triangle where length of each side is In2, then find an interior
P-angle.

Lecturer’s comment:

1. (a) The P-line passing through z; and 29 is the intersection of the circle passing through z1, 2o

1 1
and — (as well as —) and D. The required equation is
zZ1 zZ92

(x— V2P +y* =1



(b) Let f(z) = ;1;—211' Then f(z1) = 0 and f(zs) = % We have,
d(z1,22) = d(0,f(22))
1
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2. Let f(2) = 1 31 = 3 Let A’, B’ and C’ be the images of A, B and C under f(z)
32— z—
respectively.
1
Then, A’ = f(21) =0, B' = f(22) = 3
15 1 481
C' = f(z3) = 73T R(cos a + isina), where R = T and o &~ —46.8°.

Therefore, the P-angle /BAC = /B'A'C" ~ 46.8°.
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Also, by (a), we have cosh 2z = cosh? x4 sinh® # = cosh® z + (cosh® z — 1) = 2 cosh® z — 1 and

cosh 2z = cosh? z + sinh® z = (sinh® z + 1) + sinh® z = 2sinh? z + 1.
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5. (a) By using sine rule, Ssilr?m = %, so sinh b = T\f and b= sinhfl(T\[) ~ 1.702.
Then, by using the cosine rule,
sinhbsinhccos A = coshbcoshc — cosha
sinh b cos A(%) = cosh b(%) —cosha

(sinhbcos A — cosh b)e?® + (2cosha)e — (sinhbcos A +coshb) = 0

which is a quadratic equation. Therefore, ¢ ~ 0.397 or ¢ ~ 1.859.



(b) Poincaré disk is a Hilbert plane, so proposition 1.5 (Base angles of an isosceles triangle equal to

each other) in Eucild’s Elements also holds on Poincaré disk. Therefore, all interior P-angles

of an equaliteral P-triangle are the same. Now, we have a = b = ¢ =1n2. Then,
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